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We want to:

detect the same interest points regardless of
image changes

Darya Frolova, Denis Simakov
http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/InvariantFeatures.ppt

Review: A Simple Example

Harris corner detector

Motivation...

« Feature points are used also for:
Image alignment (homography, fundamental matrix)
3D reconstruction
Motion tracking
Object recognition
Indexing and database retrieval
Robot navigation
... other

Models of Image Change

* Geometry

Rotation [ =
Similarity (rotation + uniform scale)  [JJjj= .

Affine (scale dependent on direction)  [Jij= 4
valid for: orthographic camera, locally planar
object

* Photometry
Affine intensity change (I »> a1+ b) H=

The Basic Idea

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

* We should easily recognize the point by looking
through a small window

« Shifting a window in any direction should give a large
change in intensity




Harris Detector: Basic Idea

s

“flat” region:
no change in
all directions

Harris Detector: Mathematics

“edge™
no change along
the edge direction

“corner”:
significant change
in all directions

Expanding E(u,v) in a 2" order Taylor series expansion, we
have,for small shifts [¢,V], a bilinear approximation:

E(u,v)= [u,v] M |:u}
v

where M is a 2x2 matrix computed from image derivatives:

M =ZW(x,y){ :
x,y ley

Harris Detector: Mathematics

12

L1,
2
Iy

|

Classification of
image points using
eigenvalues of M:

A, and A, are small;
E is almost constant
in all directions

Harris Detector: Mathematics

Window-averaged change of intensity for the shift [u,v]:

Eu,v) =Y wix, »)[I(x+u, y+v) = 1(x, )]

x.y,
Window
function

Window function w(x,y) =

1 in window, 0 outside Gaussian

Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

E(u,v);[u,v] M |:u:| Ay, A, — eigenvalues of M/
v

direction of the
fastest change

Elllpse E(u, V) = const direction of the

slowest change

Harris Detector: Mathematics

Measure of corner response:

R=detM —k(tlraceM)2

detM =44,
traceM =1, + 4,

(k — empirical constant, k£ = 0.04-0.06)



Harris Detector: Mathematics Harris Detector

* The Algorithm:
— Find points with large corner response function R
(R > threshold)
— Take the points of local maxima of R

Ay
* R depends only on
eigenvalues of M

* R is large for a corner

* R is negative with large
magnitude for an edge

* |R| is small for a flat
region

|R| small

Harris Detector: Workflow Harris Detector: Workflow
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Harris Detector: Workflow Harris Detector: Workflow

Find points with large corner response: R>threshold Take only the points of local maxima of R




Harris Detector: Workflow

Harris Detector: Some Properties

« Rotation invariance

‘ Corner response R is invariant to image rotation ‘

~ |E>
&7 A

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

Harris Detector: Some Properties

¢ Quality of Harris detector for different scale
changes

Hartis =
g daitin -

e L1} :
Repeatability rate:
# correspondences

# possible correspondences

an

repoatabily e

[E
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C.Schmid et.al. “Evaluation of Interest Point Detectors”. IICV 2000

Harris Detector: Summary

« Average intensity change in direction [#,V] can be expressed as a
bilinear form:

u
E@u,v)=[u,y] M L}

« Describe a point in terms of eigenvalues of M:
measure of corner response

2
R=A—k(A+2)
* A good (corner) point should have a large intensity change in all
directions, i.e. R should be large positive

Harris Detector: Some Properties

« Partial invariance to additive and multiplicative
intensity changes

v Only derivatives are used => invariance
to intensity shift / — I+ b

v Intensity scale: I - a 1
NI i /\/\ A
threshold = S o ' | /R S

| Sabey, < |
i

X (image coordinate) X (image coordinate)

Harris Detector: Some Properties

* Not invariant to image scale!

-

All points will be Corner !
classified as edges



Scale Invariant Detection

« Consider regions (e.g. circles) of different sizes around
a point

« Regions of corresponding sizes will look the same in
both images

Scale Invariant Detection

¢ Solution:

— Design a function on the region (circle), which is “scale
invariant” (the same for corresponding regions, even if
they are at different scales)

Example: average intensity. For corresponding regions
(even of different sizes) it will be the same.

— For a point in one image, we can consider it as a
function of region size (circle radius)

Image 1 f Image 2
scale = 1/2
—)
region size region size

Scale Invariant Detection

+ Functions for determining scale f =Kernel * Image
Kernels:
L=¢" (Gxx(x,y,o) + ny(x,y,a)) "
(Laplacian)

DoG = G(x,y, ko)~ G(x,y,0)

(Difference of Gaussians)

where Gaussian o B e e R A HH R B

K1y’

G(x.y.0)=p-e

Note: both kernels are invariant to
scale and rotation

Scale Invariant Detection

« The problem: how do we choose corresponding circles
independently in each image?

Scale Invariant Detection

« Common approach:

Take a local maximum of this function

Observation: region size, for which the maximum is
achieved, should be invariant to image scale.

Important: this scale invariant region size is
found in each image independently!

f Image 1 Image 2
K scale = 1/2
! [l
él region size Sy region size
Scale Invariant Detectors
: ; scale T
» Harris-Laplacian’ g
Find local maximum of: -2
— Harris corner detector in T%
space (image coordinates) 1‘

— Laplacian in scale -
P <« Harris —» X

« SIFT (Lowe)?
Find local maximum of:

— Difference of Gaussians in
space and scale

<« DoG >

<« DoG —> X

' K.Mikolajezyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points™. ICCV 2001
2D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004



Scale Invariant Detectors

* Experimental evaluation of detectors
w.r.t. scale change

== Harris-Laplacian

o3 —= SIFT (Lowe)
=+ Harris
2 o
Repeatability rate: =
# correspondences z ..
—_— ®
# possible correspondences 2,
e
8
%!
o
nI [ ) E] s . [E
scale

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points™. ICCV 2001

Affine Invariant Detection

* Above we considered:
Similarity transform (rotation + uniform scale)

$ — ‘

* Now we go on to:
Affine transform (rotation + non-uniform scale)

= N3

Affine Invariant Detection

Scale Invariant Detection:

Summary

« Given: two images of the same scene with a large scale
difference between them

* Goal: find the same interest points independently in
each image

« Solution: search for maxima of suitable functions in
scale and in space (over the image)

Methods:

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over
scale, Harris’” measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space

Affine Invariant Detection

+ Take a local intensity extremum as initial point
* Go along every ray starting from this point and stop when
extremum of function f is reached

fl _//\, P LN
Hew - 1,]dr

points along the ray "

* We will obtain approximately
corresponding regions

Remark: we search for scale
in every direction

<—\L final ellipse

1),
-

finy

Figure 2: The intensity along “rays” emanating from a local extremum are examined.
The point on each ray for which a function ftt) reaches an extremum is selected. Linking
these points together vields an affinely invartant region, fo which an ellipse is fitted using
momenis.

« all points corresponding to extremum of f(t) along rays originating from the same local
extremum are linked to enclose an (affinely invariant) region (see figure 2).

< This often irregularly-shaped region is then replaced by an ellipse having the same
shape moments up to the second order. This ellipse-fitting is affinely invariant as well.

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local,
Affinely Invariant Regions”. BMVC 2000.

Affine Invariant Detection

« Algorithm summary (detection of affine invariant region):
Start from a local intensity extremum point

Go in every direction until the point of extremum of some
function f

Curve connecting the points is the region boundary
Compute geometric moments of orders up to 2 for this region
Replace the region with ellipse

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local,
Affinely Invariant Regions”. BMVC 2000.



Affine Invariant Detection

them with ellipses
*  Geometric Moments:

my, = [ X7y £ (x, y)dxdy

02

Taking f to be the characteristic function of a region
(1 inside, 0 outside), moments of orders up to 2 allow

to approximate the region by an ellipse

The regions found may not exactly correspond, so we approximate

Affine Invariant Detection

Fact: moments 772,,, uniquely
determine the function f

This ellipse will have the same moments of
orders up to 2 as the original region

Affine Invariant De

tection :

Summary

« Under affine transformation, we do not know in advance shapes of

the corresponding regions

approximates this region
* For corresponding regions ellipses

Ellipse given by geometric covariance matrix of a region robustly

also correspond.

Methods:

1. Search for extremum along rays [Tuytelaars, Van Gool]:

2. Maximally Stable Extremal Regions [Matas et.al.]

* Covariance matrix of region points defines an ellipse:

q=A4p
>
PTZIIPZI qrz;q:
_ T
2 =(p") 2, =(9q") .
(p =[x, y]"is relative
to the center of mass) 22 — AZI A"

Ellipses, computed for corresponding
regions, also correspond!




